4. Electricity and magnetism

4.3 Electric circuits

Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer	Marks
(a)(i)	(to) change / control current (in circuit / heater) OR change / control p.d. voltage (across heater)	B1
(a)(ii)	(6.0 ÷ 1.5 =) 4 (cells)	B1
(a)(iii)	symbol for voltmeter seen or used	B1
	connected in parallel with heater	B1
(b)	(E =) 260 (J)	А3
	$(E =) 1.6 \times 40 \times 4.0$	(C2)
	$(E =) I \times t \times V \text{ OR } P = I \times V \text{ AND } (E =) P \times t$	(C1)

Q2.

Question	Answer	Marks
(a)	any two from: switch ammeter variable resistor	B2
(b)	(power =) 2.4 (W)	А3
	(power =) 0.4(0) × 6(.0)	(C2)
	(power =) $I \times V$	(C1)
(c)	lamp symbol drawn in parallel with lamp in circuit	B1

Q3.

Question	Answer	Marks
(a)	ammeter symbol correct	B1
	voltmeter symbol correct	B1
(b)	$(R =) 5.7 (\Omega)$	А3
	$(R =) 8(.0) \div 1.4$	(C2)
	$V = IR$ in any form OR $(R =) V \div I$	(C1)
(c)	(E =) 340 (J)	А3
	$(E =) 8(.0) \times 1.4 \times 30$	(C2)
	(E =) VIt	(C1)

Q4.

Question	Answer	Marks
(a)	5 correct symbols for 3 marks 3 or 4 correct symbols for 2 marks 1 or 2 correct symbols for 1 mark	В3
	any from: correct symbol for battery correct symbol for ammeter correct symbol for lamp correct symbol for fixed resistor correct symbol for switch.	
	all components drawn connected in a series circuit	B1
(b)	electrons	B1
(c)	6(.0) (V)	А3
	0.40 × 15	C2
	$(V =) I \times R \text{ OR } R = V/I$	C1

Q5.

Question	Answer	Marks
(a)	ammeter, battery and test wire in complete series circuit	B1
	voltmeter in parallel with AB	B1
	correct circuit symbols for ammeter AND voltmeter	B1
(b)	14	А3
	1.56 ÷ 0.112	(C2)
	(R =) V + I in any form OR V = I \times R	(C1)
	Ω / ohm(s)	B1

Q6.

Question	Answer	Marks
(a)	correct symbol for battery	B1
	correct symbol for switch	B1
	correct symbol for lamp	B1
	all 3 components connected in series	B1
(b)(i)	0.26 (A)	B1
(b)(ii)	5.4 (Ω)	А3
	1.4 ÷ 0.26	(C2)
	V= IR or (R =) V/I	(C1)

Q7.

Question	Answer	Marks
(a)(i)	(electric) current	B1
(a)(ii)	tick in third box A ₁ is equal to A ₃	B1
(b)(i)	resistors in parallel	B1
	connected to battery AND correct circuit symbol for battery	B1
(b)(ii)	same brightness / if one fails the rest are still lit / lamps can be switched off independently / same p.d. across owtte	B1
(c)(i)	potential divider / potentiometer	B1
(c)(ii)	dimmer / change light output / intensity	B1
(c)(iii)	move the slider	B1
	varies p.d. (across lamp)	B1

Q8.

Question	Answer	Marks
(a)(i)	$(3.0 + 5.0 =) 8.0 (\Omega)$	B1
(a)(ii)	0.5(0) (A)	B1
(b)	(current/reading) increases	B1
	(because circuit) resistance decreases	B1
	(circuit)resistance becomes less than $3(.0)\Omega$ OR less than smallest resistor (value) OR current/reading more than doubles	B1
(c)	V= IR or (R =) V/I	C1
	6.0 ÷ 0.4	C1
	15 (Ω)	A1

Q9.

Question	Answer	Marks
(a)(i)	electron(s)	B1
(a)(ii)	(component X is a) <u>variable</u> resistor	B1
(a)(iii)	V= IR or (R =) V/I	C1
	5.5 ÷ 0.05 (0)	C1
	110 (Ω)	A1
(b)	(current in circuit) increases	B1
	(because) resistance of LDR decreases	B1

Q10.

Question	Answer	Marks
(a)	any three from: current in relay coil	В3
	produces magnetic field	
	relay / switch R is closed	
	heater connected to 120 V or switches on	

Q11.

Question	Answer	Marks
(a)(i)	thermistor	B1
(a)(ii)	correct symbol for ammeter drawn	B1
	correct symbol for voltmeter drawn	B1
	both meters correctly positioned in circuit	B1
(b)(i)	12 (Ω)	B1
(b)(ii)	smaller (than A)	B1

Q12.

Question	Answer	Marks
(a)(i)	correct symbol for ammeter	B1
	correct symbol for voltmeter	B1
	ammeter in series and voltmeter in parallel with lamp	B1
(a)(ii)	$(R =) V + I OR V = I \times R$ in any form	C1
	(R =) 4.5 ÷ 0.25	C1
	18 (Ω)	A1
(b)(i)	<u>variable</u> resistor	B1
(b)(ii)	(sliding contact moved to) change resistance (in circuit)	B1
	(and so) change current (in lamp) or p.d. (across lamp)	B1

Q13.

Question	Answer	Marks
(a)(i)	cell symbol correctly drawn	B1
(a)(ii)	series	B1
(a)(iii)	electrons	B1
(b)(i)	any two from: (both) lamps have correct / full potential difference if one lamp fails the other lamp still lights lamps can be switched (on/off)independently	B2
(b)(ii)	$V = IR \text{ or } (I =) V \sqrt{R}$	C1
	3 √ 12	C1
	0.25 (A)	A1

Q14.

Question	Answer	Marks
(a)	(position) R	B1
(b)	V = IR in any form	C1
	$(R =) 6.0 \div 0.5 \text{ OR } 6.0 = 0.5 \times R$	C1
	(R=) 12	A1
	Ω or ohms	B1
(c)	both lamps have correct p.d. OR voltage (across them)	B1
	if one lamp fails the other is still lit	B1

Q15.

Question	Answer	Marks
(a)	thermistor	B1
(b)(i)	low (brightness) OR off	M1
	pd or voltage (across lamp) is zero or almost zero	A1
(b)(ii)	(brightness / it) increases	B1
	p.d. / voltage (across lamp) increases	B1
(b)(iii)	lamp blows / fuses (when p.d. too high)	B1

Q16.

Question	Answer	Marks
(a)	ammeter symbol	B1
	ammeter in series (with power supply)	B1
	voltmeter symbol	B1
	voltmeter in parallel (with lamps/power supply)	B1
	two lamps in parallel	B1
(b)	(brightness) stays the same	B1
	current (in working lamp) stays the same	B1

Q17.

Question	Answer	Marks
(a)(i)	correct symbols for:	
	ammeter	B1
	voltmeter	B1
	ammeter in series OR voltmeter in parallel	B1
(a)(ii)	Any five from: close switch adjust / change variable resistor to give current in resistor / reading on ammeter measure / record (pair of) readings on ammeter and voltmeter description of any check for reliability idea of adjusting variable resistor to give range of readings plot a graph suitable spacing of readings e.g. every 0.05A or 0.1 A use of V= IR or R = V/I repeat AND calculate average (value for R)	B4
(b)	(circuit) resistance increases	B1
	BUT (circuit) resistance doubles / becomes 40 Ω (award two marks as assumes previous (1st) marking point)	B1
	(current) decreases	B1
	BUT(current) halves / becomes 0.2 A (award two marks as assumes previous (3 rd) marking point)	B1

Q18.

Question	Answer	Marks
(a)(i)	top box (electrons) ticked	1
(a)(ii)	12 + 6 seen or 18 (Ω)	1
(a)(iii)	(V =) I × R	1
	(V =) 0.50 × 18(.0)	1
	(V =) 9.0 (V) ecf from (a)(ii)	1
(b)	(reading/current) increases	1
	(because effective circuit) resistance decreases/resistors in parallel have less resistance	1

Q19.

Question	Answer	Mark
(a)	12 (Ω)	А3
	4.8/0.4	(C2)
	$V = IR \ \mathbf{OR} \ (R =) \ V/I$	(C1)
(b)	(lamp is) brighter OR (brightness) increases	B1
	resistance of wire and resistor in parallel is less than resistance of wire owtte OR voltage across lamp/L increases	B1
	(so) current in lamp increases	B1

Q20.

Question	Answer	Marks
(a)(i)	increased	B1
	decreased	B1
(a)(ii)	the same	B1
(b)	correct voltmeter symbol	B1
	in parallel with battery	B1
(c)	R = V ÷ I in any form	C1
	3(.0) ÷ 0.15	C1
	20	A1
	Ω /ohms	B1

Paper 4

Q21.

Question	Answer	Marks
(a)	work done by a unit charge passing through a component	A2
	(electrical) work done AND moving charge	C1
(b)	(p.d. =) E – reading on voltmeter OR subtract reading on voltmeter from E	B1
(c)(i)	(intensity of light on LDR) increased AND (temperature of thermistor) decreased	B1
(c)(ii)	reading on voltmeter / it decreases	B1
	Any two from:	B2
	1 e.m.f. is constant	
	2 $R_{LDR}/R_{thermistor}$ decreases OR R_{LDR} is a smaller proportion of the total resistance	
	3 $V_{LDR}/V_{thermistor}$ decreases OR V_{LDR} is a smaller proportion of e.m.f.	
	$4 \qquad \frac{R1}{R2} = \frac{V1}{V2}$	

Q22.

Question	Answer	Marks
(a)	(electrical) work done moving a unit charge around a (complete) circuit	A
	work done AND moving a charge (in a circuit)	C1
(b)(i)	correct symbols for five cells in series	В
	correct symbols for variable resistor AND fixed resistor	В
	cells, variable resistor and fixed resistor connected in series	В
(b)(ii)	curve with negative gradient of decreasing magnitude from 0Ω to 150Ω AND does not reach the x-axis	A
	curve / line with negative gradient from 0Ω to 150Ω	C1
	y-axis labelled 0.25 where candidate's line meets the y-axis OR the mark on the y-axis labelled 0.25	A
	$R = V/I \text{ OR } (I_{\text{max}} =) V/R \text{ OR } 7.5/30$	C1

Q23.

Question	Answer	Marks
(a)(i)	correct voltmeter symbol connected across LDR	B1
(a)(ii)1	(resistance) increases	В1
(a)(ii)2	(p.d.) increases because resistance of parallel combination of LDR and LED increases	B1
	greater proportion of (total) p.d. across LDR / LED / parallel combination of LDR and LED	B1

(b)	960Ω	А3	
	current in each bulb = 0.25 OR $R = V/I$ OR $(R =) V/I$	C1	
	resistance = 240 / 0.25 OR 1 / 480 = 1 / R + 1 / R	C1	

Q24.

Question	Answer	Marks
(a)(i)	0 (A)	B 1
(a)(ii)	(I = 12/2 =) 6.0 A	A2
	(I =) V/R in any form	C1
(a)(iii)	(I = 12/5 =) 2.4 A	A2
	$(R_s = R_1 + R_2 = 2 + 3 =) 5 (\Omega)$	C1
(b)	$(R_p = 6/5 =) 1.2 \Omega$	А3
	$1/R_p = 1/R_1 + 1/R_2 \text{ OR } (R_p =) R_1 R_2 / (R_1 + R_2)$	C1
	$1/R_p = 1/2 + 1/3 \text{ OR } (R_p =) 2 \times 3/(2 + 3)$	C1

Q25.

Question	Answer	Marks
(a)	7.5 V	B1
(b)(i)	$1/R_p = 1/R_1 + 1/R_2 \text{ OR } (R_p =) R_1R_2/(R_1 + R_2) \text{ in any form}$	C1
	$(R_p =) 1.2 (\Omega)$	C1
	3.2 Ω	A1
(b)(ii)	(V =) IR in any form	C1
	4.1V	A1

Q26.

Question	Answer	Marks
(a)	and between P and Q	B1
(b)	1.5 V c.a.o.	B1
(c)(i)	1600 Ω	А3
	$(V_{800\Omega} =) 4.0 (V)$	C1
	(I =) V/R in any form or 4.0 / 800 or 0.0050 (A) or (R =) V/I or 8.0 / 0.0050	C1
	OR 1600 Ω	(A3)
	$(V_{800\Omega} =) 4.0 (V)$	(C1)
	$(R_{\text{Th}} =) R_{800\Omega} \times V_{\text{Th}} / V_{800\Omega}$ in any form or $(R_{\text{Th}} =) 800 \times 8.0 / 4.0$ in any form	(C1)
	OR 1600 Ω	(A3)
	$\frac{12}{800+R_{Th}} \text{ or } \frac{8.0}{R_{Th}} \text{ or } \frac{R_{Th}}{800+R_{Th}}$	(C1)
	$\frac{12}{800+R_{Th}} = \frac{8.0}{R_{Th}} $ in any form	(C1)
(c)(ii)	larger proportion of the e.m.f. (across thermistor) ${f or}$ smaller voltage across 800 ${\Omega}$	B1
	temperature (of thermistor) is smaller / has decreased	B1
	resistance of thermistor / circuit is large(r)	B1

Q27.

Question	Answer	Marks
(a)(i)	recognisable ammeter in gap AB AND straight lines in CD AND EF	B1
(a)(ii)	recognisable voltmeter across 4 Ω	B1
	correct voltmeter symbol used	B1
(a)(iii)	V = IR in any form or (V =) IR words, symbols or numbers	C1
	$(V_{2\Omega} = 2 \times 2.5 =) 5 \text{ V}$	C1
	$(I_{4\Omega}$ = 5 ÷ 4 =) 1.3 A must be clear that I refers to 4 Ω OR calculates $R_{\rm p}$ = 1.33 Ω OR 4 ÷ 3 Ω	C1
	$(I_{6\Omega} = 2.5 + 1.3 =) 3.8 \text{ A}$ OR $(I_{6\Omega} = 5 \div 1.33 =) 3.8 \text{ A}$	A1
	Alternative route for first 3 mps	
	I proportional to 1 ÷ R OR $I_{2\Omega} \times R_{2\Omega} = I_{4\Omega} \times R_{4\Omega}$	C1
	$I_{4\Omega} = I_{2\Omega} \div 2$	C1
	$(I_{4\Omega} = I_{2\Omega} + 2 = 2.5 \div 2 =) 1.3 \text{ A}$	C1
	Alternative route by potential divider	
	V = IR in any form or (V =) IR words, symbols or numbers	C1
	$(V_{2\Omega} = 2 \times 2.5 =) 5 \text{ V}$	C1
	$V_T = 7.33 \times 5 \div 1.33 \ (= 27.51 \ V)$	C1
	$(I_{6\Omega} = 27.51 \div 7.33 =) 3.8 \text{ A}$	A1

(b)	any sort of triangle symbol pointing to left in EF	B1	
	a wire in CD	B1	

Q28.

Question	Answer	Marks
(a)	any two from: • (potential divider) splits / shares / divides the e.m.f. / voltage / potential difference / p.d. (of a power source / in a circuit) • (e.m.f. is) split between (two) resistors / components (connected in series to power source) • (potential divider shares e.m.f.) in proportion to the resistances (of the resistors / components)	B2
(b)(i)	(e.m.f. =) 15 V	B1
(b)(ii)	(resistance =) 60Ω	А3
	$(R_{\parallel} =) R_2 R_3 / (R_2 + R_3)$ OR $(R_{\parallel} =) 40 \times 40 / (40 + 40)$ OR $(R_{\parallel} =) 1600 / 80$ OR $1 / R_{\parallel} = 1 / R_2 + 1 / R_3$ OR $1 / R_{\parallel} = 1 / 40 + 1 / 40$ OR $(R_{\parallel} =) (1 / 40 + 1 / 40)^{-1}$ OR $(R_{\parallel} =) 20$ (Ω)	C1
	(resistance =) 40 + (candidate's value for combined resistance of R_2 and R_3)	C1

(c)	(reading =) 10 V	A2
	emf shared in same proportion as resistance OR e.g. $R_1/R_{\parallel} = V_1/V_{\parallel}$ OR (reading =) $15 \times 40/60$ OR (reading =) 0.25×40	C1

Q29.

(c)(i)	2.0 V	A1
(c)(ii)	(ratio of p.d. across R ₂ :R ₃ =) 1:2	B1
(c)(iii)1.	current is zero in R ₁ AND diode is in wrong direction (to allow current) owtte	B1
(c)(iii)2.	(ratio of p.d. across R ₂ : R ₃ =) 1:1	B1

Q30.

Question	Answer	Marks
(a)	both relate to energy per unit charge	B1
(b)	e.m.f. applies to the whole circuit / source or p.d. to one (or more) component or energy conversion to electrical for e.m.f. or from electrical for p.d.	B1
(c)(i)	4.8 V	B1
(c)(ii)	20Ω	А3
	$1/R_T = 1/R_1 + 1/R_2$ or $(R_T =) R_1 R_2 / (R_1 + R_2)$ or $1/R_T = 1/24 + 1/12$ or $1/R_T = 3/24$ or $(R_T =) 24 \times 12 / (24 + 12)$	C1
	$8.0(\Omega)$	C1
(c)(iii)	2.9 V	A2
	$V = ER/R_T$ in any form or $4.8 \times 12/20$ or $I = E/R$ in any form or 0.24 seen	C1

Q31.

Question	Answer	Marks
(a)	Q/t or (rate of) flow of (electric) charge / electrons	B1
(b)	(current in the 450 Ω resistor =)	B1
(c)	$(V_{450 \Omega} =) IR \text{ or } 0.012 \times 450 \text{ or } 5.4 \text{ (V) or } 9.0 - 5.4 \text{ or } 3.6 \text{ (V) seen}$	C1
	(I =) 3.6/800 or 0.0045 (A)	C1
	(P =) VI or 3.6 × 0.0045 or 3.6 ² /800	C1
	1.6 × 10 ⁻² W or 16 mW	A1
(d)	resistance (of LDR) decreases	B1
	current (in circuit) increases or resistance of parallel pair decreases	C1
	p.d. across 800Ω resistor increases and p.d. across 450Ω resistor decreases or resistance of parallel pair a smaller fraction of total resistance and p.d. across 450Ω resistor decreases	A1

Q32.

Question	Answer	Marks
(a)	(related to) energy supplied in driving charge in a circuit / conductor or property of source / battery / cell / power supply	B1
	energy supplied per / to unit charge or energy transferred to electrical energy or from other form of energy or energy in driving charge around a complete circuit	B1
(b)(i)	(I = V + R = 240 + 30 =) 8.0 A	B1
(b)(ii)	$(P =) VI \text{ or } 240 \times 8.0$	C1
	1900 W	A1
(b)(iii)1	half (the size)	B1
	(equal voltage / p.d. / e.m.f. and) resistance is twice the size $\mathbf{or}\ I$ and R are inversely proportional	B1
(b)(iii)2	(fuse rating =) 13 A / 14 A / 15 A / 16 A / 17 A / 18 A / 19 A	B1
	total current is 12.1 A	B1

Q33.

Question	Answer	Marks
(a)	thermistor c.a.o.	B1
(b)(i)	$V_X = V_{30}$	B1
(b)(ii)	$V_X = E - V_{20}$ in any form	B1
(c)(i)	$1/R_1 + 1/R_2 = 1/R_{\text{tot}}$ OR $(R_{\text{tot}} =) R_1 R_2 / (R_1 + R_2)$ OR $1/15 + 1/30 = 1/R_{\text{tot}}$ OR $(15 \times 30) / (15 + 30)$	C1
	10 (Ω) OR 10 + 20	C1
	30 Ω	A1
(c)(ii)	I = V/R in any form OR $(I =) V/R$ OR $6.0/30$	C1
	0.20 A	A1
(d)	resistance of X decreases	B1
	ammeter reading / it increases and (total) resistance (of circuit) decreases / more voltage across 20 Ω resistor	B1